
High-resolution temporal weighting of interaural time
differences in speech

Lucas S Baltzella) and Virginia Bestb)

Department of Speech, Language, and Hearing Sciences, Boston University, 635 Commonwealth Avenue, Boston,
Massachusetts 02215, USA

ABSTRACT:
Previous studies have shown that for high-rate click trains and low-frequency pure tones, interaural time differences

(ITDs) at the onset of stimulus contribute most strongly to the overall lateralization percept (receive the largest per-

ceptual weight). Previous studies have also shown that when these stimuli are modulated, ITDs during the rising por-

tion of the modulation cycle receive increased perceptual weight. Baltzell, Cho, Swaminathan, and Best [(2020). J.

Acoust. Soc. Am. 147, 3883–3894] measured perceptual weights for a pair of spoken words (“two” and “eight”), and

found that word-initial phonemes receive larger weight than word-final phonemes, suggesting a “word-onset domi-

nance” for speech. Generalizability of this conclusion was limited by a coarse temporal resolution and limited stimu-

lus set. In the present study, temporal weighting functions (TWFs) were measured for four spoken words (“two,”

“eight,” “six,” and “nine”). Stimuli were partitioned into 30-ms bins, ITDs were applied independently to each bin,

and lateralization judgements were obtained. TWFs were derived using a hierarchical regression model. Results sug-

gest that “word-initial” onset dominance does not generalize across words and that TWFs depend in part on acoustic

changes throughout the stimulus. Two model-based predictions were generated to account for observed TWFs, but

neither could fully account for the perceptual data. VC 2021 Acoustical Society of America.
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I. INTRODUCTION

When extracting information about the location of a

sound source in the world, listeners must integrate binaural

cues over time and frequency. Using controlled stimuli,

numerous studies have shown that this integration is based

on a non-uniform weighting of these cues (in particular

interaural time differences, ITDs), and a number of distinct

weighting phenomena have been observed implicating both

central and peripheral mechanisms (for reviews, see Clifton

and Freyman, 1997; Stecker et al., 2021; Best et al., 2021).

The extent to which these phenomena generalize to spectro-

temporally complex speech signals is not clear. In a recent

attempt to characterize the perceptual weighting of ITD

cues in speech, Baltzell et al. (2020) measured spectro-

temporal weights for a pair of monosyllabic spoken words

(“two” and “eight”). Using a regression model to relate

ITDs in the stimulus to lateralization judgements, they

found that frequency bands between approximately 400 and

1000 Hz received the largest perceptual weight, consistent

with previous studies identifying a “spectral dominance”

region, broadly peaked between 600 and 800 Hz. They also

found that perceptual weights were largest for phonemes at

the beginning of the word, consistent with previous studies

demonstrating the increased weighting of cues at sound

onset (“onset dominance”). This result seemed to reflect the

influence of a temporal weighting mechanism that favored

the global onset of the speech stimulus (“word-onset domi-

nance”), rather than local fluctuations throughout the

stimulus.

Generalizability of this conclusion suffered from two

limitations. First, the words “two” and “eight” each contain

salient acoustic onsets at the beginning of the word (Figs. 1

and 2). For “two” there is a word-initial broadband transient

from the voiceless plosive /t/, and for “eight,” there is an

abrupt, high-energy onset of the vowel /eI/. Since onset

dominance for controlled stimuli is known to depend on a

number of acoustic factors including onset steepness (e.g.,

Klein-Hennig et al., 2011), we wanted to examine words

with less salient word-initial onsets. In the current study, in

addition to the words “two” and “eight,” we obtained tem-

poral weighting functions (TWFs) for the words “six” and

“nine.” For “six,” the fricative /s/ does not have a steep

onset or much low-frequency energy, and so may not be as

effective at carrying ITD cues (and thus driving perceptual

weighting). For “nine,” despite a clear word-initial voicing

onset, the peak in voiced energy does not occur until the

word-medial vowel /ai/, and this more gradual onset of

voiced energy may also be less effective. A second limita-

tion of the previous study was that we only obtained weights

for two time bins, making it difficult to observe any influ-

ence of local temporal fluctuations throughout the word.

Since previous studies have demonstrated that weighting
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patterns follow envelope fluctuations for modulated sounds

(e.g., Dietz et al., 2013; Stecker, 2018), it is reasonable to

expect that this will also be the case for speech. In the pre-

sent study, we obtained TWFs with 30-ms temporal resolu-

tion. By measuring TWFs for a larger set of speech tokens

and with a finer resolution, the goal of the present study was

to determine (1) whether ITDs at word onset consistently

receive the highest perceptual weight (“word-onset domi-

nance”), and (2) whether perceptual weights are sensitive to

envelope fluctuations throughout the word.

II. METHODS

A. Participants

Eight listeners (five female) with normal hearing (all

pure-tone audiometric thresholds �20 dB hearing level, up

to 8 kHz) between the ages of 19 to 32 (mean age¼ 24) par-

ticipated in this study. All were native English speakers.

Experiments were conducted at Boston University, and all

procedures were reviewed and approved by the Institutional

Review Board. All listeners provided informed consent prior

to testing, and some had previous experience with psycho-

acoustic testing.

B. Stimuli

Four speech tokens were drawn from a corpus of mono-

syllabic words recorded by Sensimetrics Corporation

(Malden, MA), which contained recordings from multiple

male and female talkers (see Kidd et al., 2008). In addition

to recordings of the words “two” and “eight” (used in

Baltzell et al., 2020), recordings of the words “six” and

FIG. 1. (Color online) Spectrogram representation of the four speech tokens. Tokens were partitioned into 30-ms time bins, and grids overlaid on the spec-

trogram represent the boundaries between these bins. The overall intensity for each token was 70 dB SPL.

FIG. 2. (Color online) (A) Envelopes at the output of a gammatone filter bank for each word. Only odd-numbered filters (1, 3, etc.) are shown for display

purposes. (B) The envelope onset metric Env, derived in three different ways from the envelopes in (A), are shown in arbitrary normalized units.
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“nine” were also selected. The four selected words were

spoken by the same female talker. Spectrograms of these

word tokens are shown in Fig. 1.

Each speech stimulus was partitioned into 30-ms time

bins, gated on and off with a 5-ms crossfade centered at the

boundary between bins. Because the ramp and damp func-

tions of the crossfade were mirror-image raised-cosine (1/

4 cycle) windows, the sum of the windows was equal to one

across all samples. Speech token durations were unequal,

which resulted in 15 bins for “two,” 16 bins for “eight,” 22

bins for “six,” and 23 bins for “nine.” ITDs for each time

bin were drawn independently from a 6150-ls uniform dis-

tribution (mean of 0). The same distribution was used across

bins and listeners. This distribution was chosen so that the

extreme ITDs would be clearly distinguishable by any lis-

tener, but not so large that variations in ITD across time bins

would disrupt their binding into a single perceptual stream.1

Within each bin, ITDs were applied in the frequency domain

by taking a fast Fourier transform (FFT) of the signal in one

ear (the delayed ear), shifting the phase of each frequency

component corresponding to the delay specified by the ITD,

and taking the IFFT of the resulting spectrum. This results

in a shift of the entire waveform in the delayed ear but pre-

serves the interaural phase relationship that would naturally

occur for the desired ITD.

C. Procedure

Stimuli were presented via Sennheiser HD 280 head-

phones (Wedemark, Germany) to listeners seated in a

double-walled sound-attenuating chamber (IAC Acoustics,

North Aurora, IL). The digital signals were generated on a

PC outside of the booth and then routed through an RME

HDSP 9632 24-bit soundcard (Haimhausen, Germany).

Stimulus presentation level was normalized based on head-

phone calibration to a flat-spectrum broadband noise, and

inverse filtering based on the headphone frequency response

was not applied. All stimuli were presented at 70 dB sound

pressure level (SPL).

Listeners were asked to make lateralization judgments

for the speech tokens with non-uniform ITDs. On each trial,

two copies of the same word were presented, separated by a

500-ms inter-stimulus interval. The first copy served as a

reference and was presented diotically (all time bins with

zero ITD). The second copy was the target and contained a

random ITD in each time bin (see Sec. II B). Listeners were

instructed to indicate whether the target word was presented

from the left or right relative to the reference. They were

also instructed to provide an answer even if they were not

sure.

Lateralization weights were obtained for each word

based on a single block of trials, and the order of blocks was

randomized for each listener. The number of trials in a given

block was determined by the number of time bins in the

word token. Specifically, 32 trials were collected for each

bin, yielding 480 trials for “two,” 512 trials for “eight,” 704

trials for “six,” and 736 trials for “nine.” Total testing time

was around four hours.

D. Analysis

1. Lateralization weights

Following Baltzell et al. (2020), lateralization weights

were obtained using a Bayesian hierarchical regression

model. This model allowed us to simultaneously estimate

population-level weights (c) and individual weights (b).

ITDs in each time bin were related to binary lateralization

judgments (0 “left” or 1 “right”) using a logistic link func-

tion, so weights are in log-odds units. Our hierarchical

model was implemented in R using the “brms” package

(B€urkner, 2018) with default uninformative priors. Like the

model described in Baltzell et al. (2020), this package uses a

non-centered parameterization. Also, following Baltzell

et al. (2020), individual intercepts and slopes were assumed

to be independent.2

This model assumes that on any given trial, listeners

linearly sum ITD cues in each time bin to arrive at a single

laterality estimate, where the ITDs in each time bin are mul-

tiplied by the appropriate observer weight (b) prior to sum-

mation. Given the potential differences in ITD sensitivity

across bins, these weights are likely influenced by sensitivity

in a non-uniform fashion. Following Baltzell et al. (2020),

population-level weights were obtained with a model that

takes as input the raw data, rather than individual model

weights that have been normalized. Weights should there-

fore be interpreted as reflecting a combination of sensitivity

and effects of temporal position. Since time bins are not

acoustically equivalent across words, each word was fit with

a separate model.

2. Quantifying “onsets” in stimulus envelope (Env)

We hypothesized that weighting patterns may depend in

part on the steepness of the rising portions of the stimulus

envelope (Klein-Hennig et al., 2011). To quantify this, we

defined a bank of 80 gammatone filters with equal log-

spaced center frequencies between 100 Hz and 10 kHz, and

passed each stimulus through this filter bank (Slaney, 1993).

At the output of each filter, we computed the envelope by

taking the magnitude of the analytic signal and applying a

low-pass filter with 128-Hz cutoff (4th order). The resulting

signals are shown in Fig. 2(A).

To compute the envelope “onset” metric Env, we first

computed a derivative for each sample of each envelope sig-

nal, resulting in a signal that describes the rate of envelope

change as a function of time (positive values indicate an

increasing envelope). All derivatives less than zero were set

to zero (half-wave rectified), and all derivative samples cor-

responding to an instantaneous intensity of less than 10 dB

SPL were discarded. This positive envelope derivative sig-

nal was partitioned into 30-ms time bins (corresponding to

the partitioning described in Sec. II B) and three different

summary statistics were derived. Assuming that lateraliza-

tion judgments are based on a simple integration of onsets
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within each bin, we calculated the mean positive envelope

derivative signal [“mean” in Fig. 2(B)]. Assuming that later-

alization judgments are based on the most salient onset

within each bin, we calculated the maximum positive enve-

lope derivative signal [“max” in Fig. 2(B)]. Assuming that

salience of an onset depends not only on the onset steepness

but also on the “flatness” of the envelope prior to onset

(Klein-Hennig et al., 2011), we calculated the difference

between each positive envelope derivative sample and the

mean positive envelope derivative in the preceding 10 ms,

and found the maximum difference in each bin [“dmax” in

Fig. 2(B)]. For each of these summary statistics, values were

summed across frequency to yield a single onset metric for

each time bin. These functions are normalized (divided by

sum) for display. Given the high degree of similarity across

these different Env metrics, and the conceptual simplicity of

the mean, Env is defined as the mean positive envelope

derivative function (red curve in Fig. 2) for all subsequent

analyses.

The envelope onset metric Env, which captures changes

in intensity, is partially correlated with raw intensity, a fea-

ture known to influence spectral/temporal weighting in a

variety of monaural contexts (e.g., Berg, 1990; Lutfi et al.,
2008; Oberfeld, 2008). The available literature suggests that

changes in intensity rather than intensity itself determine the

salience of binaural cues (see Sec. IV A), which is why we

focused primarily on Env. Given the numerous studies dem-

onstrating “loudness dominance” though, we also tried to

account for lateralization judgements using intensity (in dB

SPL) in each bin (see supplemental Fig. 1 in the supplemen-

tary material3). Due in part to the limited variation in inten-

sity over bins (compared to the variation in Env),

lateralization judgments were better accounted for by Env.

It also bears mentioning that we did not apply any

weights over frequency when deriving Env. A number of

classic studies have revealed a spectral dominance region

broadly peaked at 600–800 Hz (e.g., Bilsen and Raatgever,

1973), though other recent studies have reported different

spectral weighting functions. Ahrens et al. (2020) found that

ITDs at the low-frequency edge of broadband noise contrib-

uted most strongly to lateralization judgments. Using speech

stimuli, Baltzell et al. (2020) found that in addition to a

peak in the canonical dominance region, there was a second

high-frequency peak, possibly driven by energy in the stim-

ulus. Without strong a priori motivation for a particular set

of frequency weights, we chose not to apply any.

3. Predicting weights based on the output of an
auditory nerve model (AuN)

In addition to our onset metric Env, we derived a set of

predicted weights based on the neural representation at the

output of an auditory nerve (AN) model. Following Stecker

(2014), we first passed our experimental stimuli through a

binaural model that outputs simulated lateralization judg-

ments. We then used a regression model to determine the

extent to which ITDs in each time bin of the stimuli

accounted for the simulated lateralization judgments. From

this regression, we obtained simulated lateralization

weights, AuN. Simulated lateralization judgements were

obtained for 250 trials.

For each trial, an experimental stimulus was generated

(Sec. II B) and passed through a phenomenological AN

model (Bruce et al., 2018; see also Zilany et al., 2009). We

used a bank of 40 simulated AN channels, with equal log-

spacing between 200 Hz and 10 kHz. From the spike trains

at the output of the AN model, we computed a shuffled

cross-correlogram (SCC; see Louage et al., 2004) using 35

fibers from each channel. The SCC can be thought of as a

neural cross correlation function, and so reflects a delay-line

architecture classically attributed to the medial superior

olive (see McAlpine et al., 2001). To obtain a lateralization

judgment, SCCs were summed over channels, a centrality

weight (Stern and Shear, 1996) was applied to the result,

and the centroid was computed. This centroid is in continu-

ous lateralization units.

In order to obtain AuN, we used a regression model to

relate ITDs in the stimulus to the centroid output. Since the

centroid is continuous rather than binary, a linear rather than

logistic regression was used. Normalized AuN-weights are

shown in Fig. 3. Since neural adaptation beyond the AN is

not included in this metric, nor are any binaural integration

windows, AuN reflects the prediction if TWFs follow the rep-

resentation of interaural differences in AN firing patterns.

4. Classification performance

Classification performance was assessed for four

weighting functions: b, c, Env, and AuN. The goal was to

determine how well these weights could account for laterali-

zation judgments across listeners. Rather than simply com-

paring the shapes of different weighting functions, we

compare the extent to which these weighting functions can

account for the same lateralization judgments. By condition-

ing the comparisons on the data in this way, we remove fea-

tures of these weighting functions that do not meaningfully

affect their ability to account for observed lateralization

judgments. For instance, when comparing classification per-

formance for model prediction weights Env and AuN against

regression weights c, it is possible that despite visual differ-

ences, classification performance could be essentially equal.

For ease of explanation, we will first illustrate the method

using b-weights. For each listener i, predicted responses ŷi

were generated using the equation ŷi ¼ logit�1 biXið Þ. A

receiver operating characteristic (ROC) analysis was then

performed comparing predicted to actual responses, and clas-

sification accuracy is reported as area under the ROC curve

(AUC). AUC provides a scale-invariant measure of perfor-

mance that integrates over all classification thresholds

(“classification threshold” is analogous to “response

criterion”), and so is a measure of sensitivity akin to d 0. In

this case, classification threshold refers to lateralization bias

(intercept in the regression model), which means that the

bias term is irrelevant to classification performance, as are

any (positive) scaling factors applied to the weight functions.
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AUC units can be interpreted as the probability that the pre-

dicted response ŷ for a randomly drawn right response (1) is

larger than ŷ for a randomly drawn left response (0).

The same method was applied for c, Env, and AuN,

except that the same weight values were used for all listeners

since these weights are not listener dependent. The goal of

this analysis was to determine (1) the degree to which

population-level weights can account for individual perfor-

mance, (2) the degree to which individual performance can

be accounted for by onsets in the stimulus envelope (see Sec.

II D 2), and (3) the degree to which individual performance

can be accounted for by the AN representation of the stimu-

lus (see Sec. II D 3). In order to determine the effect of the

different “shapes” of our weighting functions, classification

accuracy was also assessed for a set of uniform (“unshaped”)

weights. By allocating equal weight to each bin, uniform

weighting reflects an un-weighted sum of the ITD values

across bins, which is related to the average by an arbitrary

proportionality constant. Classification performance for a set

of uniform weights is therefore an appropriate baseline

against which to assess classification performance for sets of

non-uniform weights (i.e., b, c, Env, AuN).

III. RESULTS

A. Lateralization weights

Lateralization weights were obtained using a Bayesian

hierarchical regression model, fit separately for each speech

token. For each time-frequency bin, a posterior distribution

of b values was obtained for each listener, as well as a poste-

rior distribution for the group-level mean c. The medians of

these distributions are shown in Fig. 4, along with 97.5%

credible intervals. We take the median of the posterior dis-

tribution as our point estimate (Bayes estimate) of the

parameter. Credible intervals indicate the range containing

97.5% of probability mass for the posterior distribution.

We see clear evidence of word-onset dominance for the

words “two” and “eight.” For these words, the first time bin

has the largest weight, followed by a steep decline in

weighting for the second time bin. For “two,” there is a

gradual decline following the second time bin that does not

correspond to a phoneme boundary. For “eight,” however,

the weights remain relatively constant over the word-initial

vowel, dropping off steeply at the phoneme boundary. We

do not see word-onset dominance for the words “six” and

“nine.” Instead, we see a sharp increase in weight at the

onset of the word-medial vowel. For “six,” weights remain

high for the duration of the vowel, dropping off during a

silent period before the onset of the word-final consonant.

The time bin containing the onset of this consonant is

upweighted, resulting in a bimodal weight pattern. For

“nine,” weights do not remain high for the duration of the

vowel. Overall weights are lower for “nine” than “six,” per-

haps due to the lack of clear onset of voicing. Overall

weights are lower for “six” and “nine” compared to “two”

FIG. 3. (Color online) Normalized lateralization weights obtained using simulated auditory nerve responses. Error bars reflecting the standard error of the

weight estimates are negligible enough as to not appear in this plot.
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and “eight,” perhaps due to the lack of a strong word-onset

cue. There is no evidence for an increase in weight towards

the end of the words that might reflect an offset or recency

effect (Stecker and Hafter, 2002).

B. Classification performance

Classification performance (AUC) was assessed for

individual-level lateralization weights b, population-level

lateralization weights c, and the model predictions Env and

AuN. To establish baseline performance, AUC was also

assessed for a set of uniform weights. These weight func-

tions are shown in Fig. 5(A) for each word, with each func-

tion normalized (divided by its sum) to be on the same

arbitrary scale. Since AUC is immune to rescaling, this nor-

malization has no effect on classification performance. AUC

values are shown in Fig. 5(B). The uniform-weighting

baseline performance (blue) reflects the extent to which a

simple average across time bins can account for lateraliza-

tion judgments. Classification performance for b (gray) is

also shown, and since these weights reflect model parame-

ters specific to each listener, this represents a ceiling on clas-

sification performance.

One goal of this analysis was to determine how well

population-level weight estimates (c) could account for indi-

vidual lateralization judgments, and another was to deter-

mine how well these judgments can be accounted for by

model predictions Env and AuN. In this case, “well” is a rel-

ative term that is bounded between ceiling performance for

b and baseline performance for uniform weights. For c, we

are particularly interested in the comparison with b, as this

tells us the extent to which population-level weights can

account for lateralization judgments across individuals. For

Env and AuN, we are particularly interested in the

FIG. 4. Bayes estimates of population-level parameters c and individual-level parameters b for each word token. Error bars indicate 97.5% credible inter-

vals. The intercept terms (leftmost gray dots) reflect response bias for lateralization judgments across all time-frequency bins. The dashed line at 0 indicates

the prediction of the null hypothesis that ITDs have no relationship to lateralization judgments.
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comparison with c, as this tells us the extent to which the

classification performance of population-level weights can

be accounted for by model predictions.

Differences in classification performance were assessed

using paired t-tests, and significance is reported using an

uncorrected two-tailed criterion of a¼ 0.05. The difference

in classification performance between b and c (b > c) was

statistically significant for all words (“two” p¼ 0.01; “six”

p¼ 0.018; “eight” p¼ 0.023; “nine” p< 0.001). Despite sig-

nificant differences, however, classification performance

tended to be similar for b and c, consistent with the fact that

temporal weighting functions were not highly variable

across individuals (Fig. 4).

The difference in classification performance between c
and Env (c > Env) was statistically significant for all words

(“two” p ¼ 0.007; “six” p ¼ 0.009; “eight” p ¼ 0.002;

“nine” p ¼ 0.02). Despite the statistically significant differ-

ences for “eight” and “nine,” however, classification perfor-

mance (AUC) was very similar for these words (“eight”

c¼ 0.79, Env¼ 0.78; “nine” c¼ 0.673, Env¼ 0.666). We

suggest that the population-level weights for “eight” and

“nine” are largely accounted for by the envelope onset

model Env, whereas weights for “two” and “six” are not.

The difference in classification performance between Env
and uniform was statistically significant for “six” (p¼ 0.02),

“eight” (p¼ 0.001), and “nine” (p¼ 0.001), but not for

“two” (p¼ 0.07).

The difference in classification performance between c
and AuN (c > AuN) was statistically significant for “two”

(p¼ 0.01), “eight” (p¼ 0.009) and “nine (p¼ 0.003), but

not for “six” (p ¼ 0.09). This suggests that population-level

weights for “six” are well accounted for by the AN-based

binaural model AuN, though this model could not account

for “two,” “eight,” and “nine.” It might be noted though that

for “eight,” classification performance for AuN is quite good

(0.76), despite being significantly worse than c (0.79). The

difference in classification performance between AuN and

uniform was statistically significant for “six” (p ¼ 0.002),

“eight” (p < 0.001), and “nine” (p ¼ 0.02), but not for

“two” (p ¼ 0.98).

While we did not evaluate differences between Env and

AuN statistically, it should be noted that in general, classifi-

cation performance for Env was superior.

IV. DISCUSSION

The primary goal of this study was to determine

whether the “word-onset” dominance observed by Baltzell

et al. (2020) generalized to words with less salient word-

initial acoustic onsets. We found that word-onset dominance

does not generalize, and that instead, weighting patterns

depend to some extent on the acoustics of each stimulus.

This result calls into question the discussion of temporal

effects offered by Baltzell et al. (2020), who suggested the

influence of a central mechanism suppressing ITD cues fol-

lowing word onset. Instead, the present results suggest that

TWFs for ITDs in speech may be largely accounted for by

peripheral mechanisms that are sensitive to the details of the

temporal envelope (e.g., Dietz et al., 2013; Stecker, 2014).

In the discussion that follows, we will consider the extent to

which the TWFs we observed can be accounted for by

model predictions, as well as the implications of our results

for the design of binaural listening devices.

A. Do TWFs for speech follow acoustic onsets?

Using modulated high-frequency tones, Klein-Hennig

et al. (2011) showed that ITD sensitivity strongly depended

on the steepness of the rising portion and duration of the

preceding silence, while the steepness of the falling portion

and the duration of the peak had no effect. Similarly,

FIG. 5. (Color online) Classification performance. (A) Weights used for classification, normalized for ease of display. Also, for ease of display, individual

weights b are not shown (see Fig. 3). (B) Mean classification accuracy across listeners in AUC units. Error bars indicate standard error of the mean.
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Dietz et al. (2013) found that ITDs at the rising portion of

the modulation cycle dominated the lateralization percept

for modulated low-frequency stimuli. Specifically, they

showed that lateralization judgments were dominated by

ITDs in the low-frequency carrier (temporal fine structure,

TFS) that coincided with the rising portions of amplitude-

modulated binaural beats. Since the envelope was diotic

(and so did not itself contain an interaural difference), their

result suggested that the sampling of binaural cues from the

TFS depended on the characteristics of the envelope (see

also Schimmel et al., 2008; Stecker and Bibee, 2014).

Together, these results suggest a common influence of mod-

ulation for both high-frequency and low-frequency carriers.

Rising-portion dominance for modulated sounds was also

observed by Stecker (2018) using broadband carriers, and

despite evidence that rising-portion dominance depends on

carrier frequency (Hu et al., 2017), a parsimonious account

of these studies is that transient onsets in the envelope of

modulated sounds trigger the sampling of binaural cues

(Stecker et al., 2021). This account is also consistent with

the numerous studies demonstrating onset dominance for

high-rate click trains (e.g., Hafter and Dye, 1983; Saberi,

1996; Stecker and Hafter, 2002), although the extent to

which this “sampling” reflects active (top-down) or passive

(bottom-up) processes is still unclear (see Sec. IV B).

A prediction from this literature is that TWFs will

reveal large weights where there are transient onsets in tem-

porally modulated stimuli such as speech. To quantify this

prediction for our stimuli, we constructed an onset metric

Env, based on the output of a gammatone filter bank. We

found that for “eight” and “nine,” this metric could effec-

tively account for observed TWFs, suggesting a strong link

between transient onsets in the envelope and the sampling

of ITDs. However, we found that Env could not account for

observed TWFs for “two” and “six,” suggesting that the

simple rising-slope model we constructed is insufficient to

relate speech acoustics to TWFs.

B. Can TWFs for speech be predicted using the
output of an auditory nerve model?

In previous studies using controlled stimuli, the inter-

pretation of ITD TWFs was simplified by the fact that each

temporal unit was acoustically identical and thus the sensi-

tivity of listeners to the ITD in each unit (when presented in

isolation) was equal. This is not necessarily true of our

speech stimuli, where acoustic differences across bins may

lead to variations in ITD sensitivity. In an effort to quantify

peripheral representation of ITDs in each bin, we deter-

mined the extent to which ITDs in the stimulus influenced

the lateral position estimate based on simulated AN

responses. These simulated weights AuN reflect the

“sensitivity” of each bin (“sensitivity” refers to the contribu-

tion of each bin to the overall inter-spike interval histogram

as captured by the SCC) along with effects of neural adapta-

tion that arise from temporal ordering.

We found that TWFs for “six” could be accounted for

by AuN, but that TWFs for “two,” “eight,” and “nine” could

not. As with Env, we found that an AN-based binaural

model is insufficient to relate speech acoustics to TWFs.

C. Peripheral vs central mechanisms

While Baltzell et al. (2020) hypothesized a word-onset

dominance for speech, the results of the present study sug-

gest instead that weighting patterns depend in part on local

onsets throughout the word. While this seems to be more

consistent with a peripheral mechanism, neither Env nor

AuN could fully account for observed TWFs. Both of these

model predictions seem to be incomplete, and it is not obvi-

ous to us why TWFs for certain words are well accounted

for by a given model, and others not. Developing a more

accurate model prediction will likely require a larger dataset

to prevent overfitting, and will be the focus of future

research.

While our results are broadly consistent with peripheral

mechanisms, there are a number of caveats worth mention-

ing. First, central mechanisms may be needed to explain

why dynamic variations in speech TFS do not influence

TWFs. Previous studies have shown that for high-rate trains

of stimulus tokens, binaural sampling “resets” when a

novel token is presented, or when some other irregularity/

aperiodicity is introduced (e.g., Hafter and Buell, 1990;

Freyman et al., 1997; Brown and Stecker, 2011; Stecker,

2018). Weights are observed to be higher corresponding to

these novel acoustic events, a phenomenon that has been

characterized as a central breakdown of echo suppression

(for a review see Clifton and Freyman, 1997). For speech,

our results suggest that while transient onsets in the enve-

lope tend to trigger the sampling of binaural cues, various

dynamic changes in the TFS do not (consistent with the

results of Dietz et al., 2013; Fig. 1).4 This result may impli-

cate a central mechanism responsible for making ongoing

predictions about the stimulus. To determine the extent to

which top-down acoustic expectations influence temporal

weighting of spectro-temporally complex sounds, it will be

useful to obtain weights using unfamiliar non-speech stim-

uli, or to use paradigms where the acoustic stimulus is not

presented repeatedly over the course of the experiment.

A second caveat concerns the time scales of binaural

changes in our stimuli. Previous studies have shown that

temporal weighting effects break down for unmodulated

click trains when the inter-click interval (ICI) becomes too

large. Stecker (2014) showed that for click trains with inter-

click intervals less than 10 ms, both TWFs and peripheral

model-based predictions revealed onset (of click train) dom-

inance and recency effects. However, for click trains with

10-ms ICIs, both TWFs and peripheral model-based predic-

tions were flat. This is consistent with the time course of

neural adaptation in the AN, which is largely released after

10 ms. It is also consistent with the operating range of the

precedence effect for click pairs (also �10 ms), which is

thought to be similarly influenced by neural adaptation in

the periphery (see Stecker & Hafter, 2002; Litovsky et al.,
1999; Brown et al., 2015). Since our stimuli were
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partitioned into 30-ms bins, we might expect the influence

of peripheral neural adaptation from one bin to another to be

relatively small. The fact that AuN tends to follow modula-

tion contours rather than revealing simple onset/recency

effects is broadly consistent with this expectation. On the

other hand, the operating range for the precedence effect is

much larger for speech than for clicks, and can be observed

out to around 50 ms (e.g., Lochner and Burger, 1958), per-

haps suggesting an influence of more central mechanisms or

sources of adaptation (e.g., Fitzpatrick et al., 1999; van der

Heijden et al., 2019). Central mechanisms likely influence

binaural integration windows, which can vary widely in size

depending on both task and stimulus (Culling and Colburn,

2000; Dietz et al., 2011; Hauth and Brand, 2018), and may

help explain why TWFs (c) were not well accounted for by

AuN.

D. Practical considerations for binaural devices

The speech envelope has long been the focus of speech

enhancement algorithms, designed to improve speech intel-

ligibility in various listening environments (e.g., Lorenzi

et al., 1999; Apoux et al., 2001; Apoux et al., 2004; Koning

and Wouters, 2012; Desloge et al., 2017). We are also aware

of at least two studies that have attempted to provide binau-

ral benefit through manipulation of the temporal envelope.

Francart et al. (2014) found improved ITD sensitivity for

bimodal cochlear implant (CI) users when stimulation in the

implanted ear was modulated such that it corresponded

explicitly to F0-related modulations in the acoustic ear,

enhancing both ongoing and onset ITDs. Also, with CI users

in mind, Monaghan and Seeber (2016) proposed an algo-

rithm that identifies local troughs in the envelope and sets

these troughs to zero, thus increasing the steepness of local

peaks. With this algorithm, they showed improved ITD sen-

sitivity for vocoded speech. It is our hope that by establish-

ing the relationship between temporal fluctuations in speech

and binaural sampling, we can motivate the design of novel

envelope-based enhancement algorithms designed to

improve the delivery of binaural cues. Such algorithms may

be particularly useful in multi-source listening environments

where binaural cues can yield substantial improvements in

speech intelligibility.

It should be noted though that when translating to real-

world applications, temporal weighting of both ITDs and

interaural level differences (ILDs) should be considered:

individually since both cues can provide binaural benefit,

and in combination since they co-occur in natural environ-

ments. Since CI users have limited access to ITD cues,

understanding the temporal weighting of ILD cues in speech

is particularly important for these individuals. Future studies

will investigate temporal weighting functions for more real-

istically spatialized speech.

V. SUMMARY

We show that TWFs can be obtained for speech stimuli

with a high degree of temporal resolution. In contrast to

Baltzell et al. (2020), we show that weights are not always

highest at the onset of a word, but that instead, weights tend

to follow ongoing changes in the acoustic envelope. Model

predictions were generated based on the steepness of rising

portions of the speech envelope (Env), and on simulated

auditory-nerve representations (AuN), and while both mod-

els performed well for certain words, neither could account

for the TWFs across all four words.
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